Guiding airborne sound through surface modes of a two-dimensional phononic crystal

dc.authoridCicek, Ahmet/0000-0002-7686-0045
dc.authoridulug, bulent/0000-0003-1744-6861
dc.authoridGUNGOR, Tayyar/0000-0003-2518-9535
dc.authoridKAYA, Olgun Adem/0000-0002-8728-6341
dc.authorwosidCicek, Ahmet/D-5990-2012
dc.authorwosidulug, bulent/C-2988-2016
dc.authorwosidKAYA, Olgun Adem/ABH-6274-2020
dc.authorwosidKAYA, Olgun Adem/Q-1686-2015
dc.authorwosidGUNGOR, Tayyar/ITT-8505-2023
dc.contributor.authorCicek, Ahmet
dc.contributor.authorGungor, Tayyar
dc.contributor.authorKaya, Olgun Adem
dc.contributor.authorUlug, Bulent
dc.date.accessioned2024-08-04T20:40:13Z
dc.date.available2024-08-04T20:40:13Z
dc.date.issued2015
dc.departmentİnönü Üniversitesien_US
dc.description.abstractExistence and guiding properties of surface modes bound to the interface between a finite two-dimensional phononic crystal and the host medium are experimentally and numerically demonstrated. Surface modes can be observed on both (1 0) and (1 1) surfaces of a square phononic crystal of steel cylinders in air. Numerical investigations of band properties and simulations of mode excitation are carried out through the finite-element method. Excited by the far field of a speaker, existence of surface modes is investigated by recording the sound field in the vicinity of the respective crystal surfaces. Both surface bands of the square phononic crystal depart from bulk bands and extend into the band gap for sufficiently high filling fractions. While such a surface band can be obtained for considerably smaller scatterer radii for the (1 0) surface, significantly higher radii around 0.49 of the lattice constant are required to obtain propagating surface modes on the (1 1) surface. Persistence of the guided surface mode along the (1 0) surface, where it diminishes in a length scale of the lattice constant in the transverse direction is demonstrated. The modes of the (1 1) surface decay faster into the air in the transverse direction. Guided modes on both surfaces propagate in a beating manner where the beat length can be determined by the wave number of the mode.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [113F015]en_US
dc.description.sponsorshipThis work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under the grant number 113F015.en_US
dc.identifier.doi10.1088/0022-3727/48/23/235303
dc.identifier.issn0022-3727
dc.identifier.issn1361-6463
dc.identifier.issue23en_US
dc.identifier.scopus2-s2.0-84929359770en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1088/0022-3727/48/23/235303
dc.identifier.urihttps://hdl.handle.net/11616/96787
dc.identifier.volume48en_US
dc.identifier.wosWOS:000354601000014en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.relation.ispartofJournal of Physics D-Applied Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectphononic crystalen_US
dc.subjectsurface modesen_US
dc.subjectfinite-element methoden_US
dc.titleGuiding airborne sound through surface modes of a two-dimensional phononic crystalen_US
dc.typeArticleen_US

Dosyalar