Fractional order linear time invariant system stabilization by brute-force search
dc.authorid | Alagoz, Baris Baykant/0000-0001-5238-6433 | |
dc.authorwosid | Alagoz, Baris Baykant/ABG-8526-2020 | |
dc.contributor.author | Alagoz, Baris Baykant | |
dc.date.accessioned | 2024-08-04T20:44:24Z | |
dc.date.available | 2024-08-04T20:44:24Z | |
dc.date.issued | 2018 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Fractional calculus increases their applications in system design and analysis problems because of providing more realistic modeling of real systems. Owing to computational complexity of fractional calculus, the computer-aided design and analysis methods are required for engineering applications of fractional order systems. This study presents a numerical method for parametric robust stabilization of fractional order systems by employing single-parameter perturbation. This method implements a fractional order perturbation strategy on the basis of brute-force search technique for system stabilization problems. In order to meet a predefined minimum argument root design specification, the proposed algorithm searches for a desired placement of the minimum argument characteristic root within the first Riemann sheet by performing iterative perturbations of the fractional order. This approach can provide a straightforward numerical solution for robust stabilization problems of fractional order systems by employing an order perturbation scheme. Moreover, a possible utilization of a fractional order derivative operator as a system stabilizer is theoretically discussed. Illustrative examples show the utilization of the proposed stabilization algorithms for computer-aided fractional order system design applications. | en_US |
dc.identifier.doi | 10.1177/0142331216685391 | |
dc.identifier.endpage | 1456 | en_US |
dc.identifier.issn | 0142-3312 | |
dc.identifier.issn | 1477-0369 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85044145319 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1447 | en_US |
dc.identifier.uri | https://doi.org/10.1177/0142331216685391 | |
dc.identifier.uri | https://hdl.handle.net/11616/98203 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:000429970400006 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Sage Publications Ltd | en_US |
dc.relation.ispartof | Transactions of The Institute of Measurement and Control | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Systems | en_US |
dc.subject | linear system theory | en_US |
dc.subject | robust control | en_US |
dc.subject | stability | en_US |
dc.subject | pole placement | en_US |
dc.subject | control system design | en_US |
dc.title | Fractional order linear time invariant system stabilization by brute-force search | en_US |
dc.type | Article | en_US |