Mechanical and fracture behavior of geopolymer composites reinforced with fibers by using nano-TiO2
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Mechanical and fracture behaviors of TiO2-added fiber geopolymer composites (TFGC) were investigated in this study. Mechanical properties of inorganic matrix composites, fiber-reinforced ceramic, and cement-based composites have been studied in different areas of engineering. However, studies about the use of TiO2-added geopolymer composites and the effects of the fiber-matrix interface of TFGC are quite rare in these areas. For this purpose, the compressive, flexural, and tensile strengths and microstructural characterizations of fiber-reinforced geopolymer composites were tested in this study. Results demonstrated that the compressive strengths of steel fiber-reinforced geopolymer composite increased for 0.5%, 1.0%, and 2.0% fiber content compared to the control sample by approximately 96.5%, 90.3%, and 79.2%, respectively. The research findings indicate the high tensile strength of TFGC due to better interface adhesion of fibers. It was also demonstrated that the macro-steel fiber volume fraction of 2.0% of the geopolymer sample exhibited strain hardening in the flexural test. Consequently, it is thought that geopolymer composites will be an important field of application in engineering areas.
Açıklama
Anahtar Kelimeler
Titanium dioxide, Fiber, Matrix, Geopolymer, Adhesion
Kaynak
Journal of The Brazilian Society of Mechanical Sciences and Engineering
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
43
Sayı
9