Yazar "Kaya, Alaattin" seçeneğine göre listele
Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Boron stress activates the general amino acid control mechanism and ınhibits protein synthesis(PLoS ONE, 2011) Uluışık, İrem; Kaya, Alaattin; Dima, Fomenko; Karakaya, Hüseyin Çağlar; Brad, Carlson; Vadim, Gladyshev; Koç, AhmetBoron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2a in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2a in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.Öğe Characterization of a cDNA from Beta maritima that confers nickel tolerance in yeast(Gene, 2014) Koç, Ahmet; Bozdağ, Gönensin O.; Kaya, Alaattin; Koç, Ahmet; Noll, Gündüla A.Nickel is an essential micronutrient due to its involvement in many enzymatic reactions as a cofactor. However, excess of this element is toxic to biological systems. Here, we constructed a cDNA library from Beta maritima and screened it in the yeast system to identify genes that confer resistance to toxic levels of nickel. A cDNA clone (NIC6), which encodes for a putative membrane protein with unknown function, was found to help yeast cells to tolerate toxic levels of nickel. A GFP fused form of Nic6 protein was localized to multivesicular structures in tobacco epidermal cells. Thus, our results suggest a possible role of Nic6 in nickel and intracellular ion homeostasis.Öğe Compartmentalization and Regulation of Mitochondrial Function by Methionine Sulfoxide Reductases in Yeast(Biochemistry, 2010) Kaya, Alaattin; Koç, Ahmet; Lee, Byung Cheon; Fomenko, Dmitri E.; Rederstorff, Mathieu; Krol, Alain; Lescure, Alain; Gladyshev, Vadim N.Elevated levels of reactive oxygen species can damage proteins. Sulfur-containing amino acid residues, cysteine and methionine, are particularly susceptible to such damage. Various enzymes evolved to protect proteins or repair oxidized residues, including methionine sulfoxide reductases MsrA and MsrB, which reduce methionine (S)-sulfoxide (Met-SO) and methionine (R)-sulfoxide (Met-RO) residues, respectively, back to methionine. Here, we show that MsrA and MsrB are involved in the regulation of mitochondrial function. Saccharomyces cerevisiae mutant cells lacking MsrA, MsrB, or both proteins had normal levels of mitochondria but lower levels of cytochrome c and fewer respiration-competent mitochondria. The growth of single MsrA or MsrB mutants on respiratory carbon sources was inhibited, and that of the double mutant was severely compromised, indicating impairment of mitochondrial function. Although MsrA and MsrB are thought to have similar roles in oxidative protein repair each targeting a diastereomer of methionine sulfoxide, their deletion resulted in different phenotypes. GFP fusions of MsrA and MsrB showed different localization patterns and primarily localized to cytoplasm and mitochondria, respectively. This finding agreed with compartment-specific enrichment of MsrA and MsrB activities. These results show that oxidative stress contributes to mitochondrial dysfunction through oxidation of methionine residues in proteins located in different cellular compartments.Öğe Genome wide identification of genes that play a role in boron stress response in yeast(Genomics, 2011) Uluışık, İrem; Kaya, Alaattin; Avşar, Kadir; Karakaya, Hüseyin ÇağlarBoron is an essential micronutrient for plants and it is either necessary or beneficial for animals. Studies identified only few genes related to boron metabolism thus far and details of how boron is imported into cells and used in cell metabolism are largely unknown. In order to identify genes that play roles in boron metabolism, we screened the entire set of yeast haploid deletion mutants and identified 6 mutants that were resistant to toxic levels of boron, and 21 mutants that were highly sensitive to boron treatment. Furthermore, we performed a proteomic approach to identify additional proteins that are significantly up-regulated by boron treatment. Our results revealed many genes and pathways related to boron stress response and suggest a possible link between boron toxicity and translational control.Öğe Identification of a novel system for boron transport: atr1 ıs a main Boron exporter in yeast_(Molecular and Cellular Biology, 2009) Kaya, Alaattin; Karakaya, Hüseyin Çağlar; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koç, AhmetBoron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1 mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1 cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1 cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance.Öğe Proteomic changes during boron tolerance in barley Hordeum vulgare and role of vacuolar proton translocatingATPase subunit E(İnönü Üniversitesi, 2011) Atik, Ahmet Emin; Bozdağ, Gönensin Ozan; Akıncı, Ersin; Kaya, Alaattin; Koç, Ahmet; Yalçın, Talat; Karakaya, Hüseyin ÇağlarBoron is an essential micronutrient for plants and animals; however, it can be toxic when present at high concentrations. Th e purpose of this study was to understand the mechanisms of boron tolerance in the Turkish barley (Hordeum vulgare) Anadolu cultivar. For this purpose, 2-dimensional electrophoresis (2-DE) was used to screen diff erentially expressed proteins for both control and boron-stressed Anadolu barley genotypes. Seven proteins were revealed by 2-DE: 1) ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCo large chain), 2) TLP5, a thaumatin-like protein, 3) PR5, a basic pathogenesis-related protein, 4) a RNase S-like protein, 5) a PSI type III chlorophyll a/b-binding protein, 6) a light-harvesting complex I LHC I, and 7) the vacuolar proton-translocating ATPase subunit E protein. Th ese were found to be upregulated in response to boron treatment. Even though the protein encoded by the V-ATPase subunit E gene was overexpressed, its transcript level was downregulated by boron treatment. Heterologous expression of the barley V-ATPase subunit E gene in yeast provided boron resistance to yeast cells. Th ese results indicated that the V-ATPase subunit E gene was functional and conferred tolerance to toxic boron levels in yeast and might play a role in the overall boron tolerance of barley.Öğe Thiol peroxidase deficiency leads to ıncreased mutational load and decreased fitness in saccharomyces cerevisiae(Genetics, 2014) Kaya, Alaattin; Lobanov, Alexei V.; Gerashchenko, Maxim V.; Koren, Amnon; Fomenko, Dmitri E.; Koç, Ahmet; Gladyshev, Vadim N.ABSTRACT Thiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (Δ8) is viable. In this study, we employed two independent Δ8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and Δ8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. Δ8 lines showed a significant increase in nonrecurrent point mutations and indels. The original Δ8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all Δ8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of Δ8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness.Öğe Thiol peroxidases mediate specific genome wide regulation of gene expression in response to hydrogen peroxide(Proceedings of the National Academy of Sciences, 2011) Fomenko, Dima; Koç, Ahmet; Agisheva, Natalia; Michael, Jacobsen; Kaya, Alaattin; Mikalai, Malinouski; Julian, Rutherford; Siu, Kam Leung; Yan Jin, Dong; Dennis, Winge; Vadim, GladysheHydrogen peroxide is thought to regulate cellular processes by direct oxidation of numerous cellular proteins, whereas antioxidants, most notably thiol peroxidases, are thought to reduce peroxides and inhibit H2O2 response. However, thiol peroxidases have also been implicated in activation of transcription factors and signaling. It remains unclear if these enzymes stimulate or inhibit redox regulation and whether this regulation is widespread or limited to a few cellular components. Herein, we found that Saccharomyces cerevisiae cells lacking all eight thiol peroxidases were viable and withstood redox stresses. They transcriptionally responded to various redox treatments, but were unable to activate and repress gene expression in response to H2O2. Further studies involving redox transcription factors suggested that thiol peroxidases are major regulators of global gene expression in response to H2O2. The data suggest that thiol peroxidases sense and transfer oxidative signals to the signaling proteins and regulate transcription, whereas a direct interaction between H2O2 and other cellular proteins plays a secondary role.