Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mamis, Mehmet S." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Design and development of travelling-wave-frequency-based transmission line fault locator using TMS320 DSP
    (Inst Engineering Technology-Iet, 2019) Arkan, Muslum; Akmaz, Duzgun; Mamis, Mehmet S.; Tagluk, Mehmet Emin
    The authors use a TMS320 digital signal processor (TMS320-DSP) to determine fault instants and estimate their location in real time in a laboratory environment. The fault instant is determined via examining the instantaneous differential changes in the line currents. After the fault is detected, the fault location is determined by processing the time-domain transient current waves. First, the travelling-wave frequency is determined by application of the fast Fourier transform to the positive-sequence-component line current after the fault, and subsequently, the fault location is estimated by utilising this frequency. The alternative transients programme (ATP)-electromagnetic transient programme is used to simulate the line currents and create short-circuit fault conditions. Furthermore, LabVIEW software and a National Instruments data acquisition board are used to transform the line currents obtained through the ATP programme into analogue signals. The TMS320-DSP determines the fault in real time and estimates the fault location using the completed software and analogue input signals. Their results indicate that the prototype device designed with the use of the TMS320-DSP is suitable for real-time fault detection.
  • Küçük Resim Yok
    Öğe
    Study of efficiency of turbines with differing diameters of solar chimney energy systems
    (Techno-Press, 2024) Icel, Yasin; Bugutekin, Abdulcelil; Mamis, Mehmet S.
    Solar Chimney Power Plants (SCPP) consist of three main components: solar collector, chimney and turbine. Air under the collector is heated by the greenhouse effect, the air density is reduced and the air flows toward the chimney located at the center of the collector. Thus, electricity is produced at the turbine mounted at the entrance of the chimney. In this study, measurements have been carried out on the Solar Chimney Power Plant (SCPP) system built at Ad & imath;yaman University Campus area, with specifications 15 m in height, 0.8 m in diameter of chimney, 0.004 m thick transparent glass floor and a collector having maximum of 27 m in diameter. For this purpose, air flow rate and temperature in the chimney at certain times of the day, ambient temperature, ambient wind speed, ground temperature heated by the greenhouse effect of the collector, temperature and air velocity under the collector, the number of revolutions of turbines of different diameters and Ad & imath;yaman solar radiation values were evaluated. In this study, it has been determined that solar radiation, ambient temperature, chimney height and diameter, solar radiation absorption rate of the ground under the collector are the parameters that affect the efficiency performance of the system. It is also observed that temperature and air velocity at the point where the turbine assembly is located are maximum. In addition, it was determined that the turbine model with a diameter of 0.8 m was the most efficient model for the system. It is concluded that Solar Chimney Power Plant (SCPP) can be considered as alternative energy sources for Ad & imath;yaman.

| İnönü Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


İnönü Üniversitesi, Battalgazi, Malatya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim