Analysis of Fractional Order Polynomials Using Hermite-Biehler Theorem

Küçük Resim Yok

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper presents some results for stability analysis of fractional order polynomials using the Hermite-Biehler theorem. The possibilities of the extension of the Hermite-Biehler theorem to fractional order polynomials is investigated and it is observed that the Hermite-Biehler theorem can be an effective tool for the stability analysis of fractional order polynomials. Variable changing has been applied to the fractional order polynomial to transform it into an integer order one. Roots of this polynomial are found and verified with the roots obtained using the Hermite-Biehler theorem. Stability analysis has been done investigating the interlacing property of the polynomial. Results are verified with the Radwan procedure. The method is clarified via illustrative examples.

Açıklama

International Conference on Fractional Differentiation and its Applications (ICFDA) -- JUN 23-25, 2014 -- Catania, ITALY

Anahtar Kelimeler

fractional order polynomials, stability, hermite-biehler theorem, interlacing property

Kaynak

2014 International Conference on Fractional Differentiation and Its Applications (Icfda)

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

Sayı

Künye