Analysis of Fractional Order Polynomials Using Hermite-Biehler Theorem

dc.authoridTan, Nusret/0000-0002-1285-1991
dc.authoridYeroglu, Celaleddin/0000-0002-6106-2374
dc.authoridSENOL, Bilal/0000-0002-3734-8807
dc.authorwosidYeroglu, Celaleddin/ABG-9572-2020
dc.authorwosidTan, Nusret/ABG-8122-2020
dc.authorwosidSENOL, Bilal/Y-5328-2018
dc.contributor.authorSenol, Bilal
dc.contributor.authorYeroglu, Celaleddin
dc.contributor.authorTan, Nusret
dc.date.accessioned2024-08-04T20:39:59Z
dc.date.available2024-08-04T20:39:59Z
dc.date.issued2014
dc.departmentİnönü Üniversitesien_US
dc.descriptionInternational Conference on Fractional Differentiation and its Applications (ICFDA) -- JUN 23-25, 2014 -- Catania, ITALYen_US
dc.description.abstractThis paper presents some results for stability analysis of fractional order polynomials using the Hermite-Biehler theorem. The possibilities of the extension of the Hermite-Biehler theorem to fractional order polynomials is investigated and it is observed that the Hermite-Biehler theorem can be an effective tool for the stability analysis of fractional order polynomials. Variable changing has been applied to the fractional order polynomial to transform it into an integer order one. Roots of this polynomial are found and verified with the roots obtained using the Hermite-Biehler theorem. Stability analysis has been done investigating the interlacing property of the polynomial. Results are verified with the Radwan procedure. The method is clarified via illustrative examples.en_US
dc.description.sponsorshipUniv Studi Catania,Home Ind & Bldg Automat Syst,Schneider Elect,IEEE Italian Chapters,IEEE Instrumentat & Measurement Soc,Nucl & Plasma Sci Soc,IEEE Control Syst Soc,Circuits & Syst Socen_US
dc.identifier.isbn978-1-4799-2591-9
dc.identifier.issn2471-612X
dc.identifier.scopus2-s2.0-84918539131en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11616/96629
dc.identifier.wosWOS:000411493600070en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2014 International Conference on Fractional Differentiation and Its Applications (Icfda)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfractional order polynomialsen_US
dc.subjectstabilityen_US
dc.subjecthermite-biehler theoremen_US
dc.subjectinterlacing propertyen_US
dc.titleAnalysis of Fractional Order Polynomials Using Hermite-Biehler Theoremen_US
dc.typeConference Objecten_US

Dosyalar