Tunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer deposition

dc.authoridALTIN, Serdar/0000-0002-4590-907X
dc.authoridKlug, Jeffrey/0000-0002-1130-5569
dc.authorwosidPellin, Michael J/B-5897-2008
dc.authorwosidALTIN, Serdar/H-4880-2014
dc.authorwosidKlug, Jeffrey A/A-3653-2013
dc.contributor.authorGroll, Nickolas R.
dc.contributor.authorKlug, Jeffrey A.
dc.contributor.authorCao, Chaoyue
dc.contributor.authorAltin, Serdar
dc.contributor.authorClaus, Helmut
dc.contributor.authorBecker, Nicholas G.
dc.contributor.authorZasadzinski, John F.
dc.date.accessioned2024-08-04T20:38:05Z
dc.date.available2024-08-04T20:38:05Z
dc.date.issued2014
dc.departmentİnönü Üniversitesien_US
dc.description.abstractA tunneling spectroscopy study is presented of superconducting MoN and Nb0.8Ti0.2N thin films grown by atomic layer deposition (ALD). The films exhibited a superconducting gap of 2meV and 2.4meV, respectively, with a corresponding critical temperature of 11.5K and 13.4K, among the highest reported T-c values achieved by the ALD technique. Tunnel junctions were obtained using a mechanical contact method with a Au tip. While the native oxides of these films provided poor tunnel barriers, high quality tunnel junctions with low zero bias conductance (below similar to 10%) were obtained using an artificial tunnel barrier of Al2O3 on the film's surface grown ex situ by ALD. We find a large critical current density on the order of 4 x 10(6) A/cm(2) at T = 0.8T(c) for a 60 nm MoN film and demonstrate conformal coating capabilities of ALD onto high aspect ratio geometries. These results suggest that the ALD technique offers significant promise for thin film superconducting device applications. (C) 2014 AIP Publishing LLC.en_US
dc.description.sponsorshipAmerican Recovery and Reinvestment Act (ARRA) thru the US Department of Energy, Office of High Energy Physics Department of Science; TUBITAK-BIDEP; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]en_US
dc.description.sponsorshipThe authors would like to thank INCOM, Inc., for providing us with the borosilicate substrates. This work was funded by American Recovery and Reinvestment Act (ARRA) thru the US Department of Energy, Office of High Energy Physics Department of Science to Argonne National Laboratory. The author Serdar Altin would like to thank TUBITAK-BIDEP for financial support during this study. Use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.en_US
dc.identifier.doi10.1063/1.4867880
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-84896791275en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1063/1.4867880
dc.identifier.urihttps://hdl.handle.net/11616/96371
dc.identifier.volume104en_US
dc.identifier.wosWOS:000332729200072en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAmer Inst Physicsen_US
dc.relation.ispartofApplied Physics Lettersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectThin-Filmsen_US
dc.subjectRoom-Temperatureen_US
dc.subjectMixersen_US
dc.subjectTransitionen_US
dc.subjectChemistryen_US
dc.subjectNitridesen_US
dc.subjectNiobiumen_US
dc.subjectEpitaxyen_US
dc.subjectSisen_US
dc.titleTunneling spectroscopy of superconducting MoN and NbTiN grown by atomic layer depositionen_US
dc.typeArticleen_US

Dosyalar