Some results on paracontact metric (k, ?)-manifolds with respect to the Schouten-van Kampen connection
Küçük Resim Yok
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Hacettepe Univ, Fac Sci
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In the present paper we study certain symmetry conditions and some types of solitons on paracontact metric (k, mu)-manifolds with respect to the Schouten-van Kampen connection. We prove that a Ricci semisymmetric paracontact metric (k, mu)-manifold with respect to the Schouten-van Kampen connection is an g-Einstein manifold. We investigate paracontact metric (k, mu)-manifolds satisfying (sic) . (sic)(cur) = 0 with respect to the Schouten-van Kampen connection. Also, we show that there does not exist an almost Ricci soliton in a (2n + 1)-dimensional paracontact metric (k, mu)-manifold with respect to the Schouten-van Kampen connection such that k > -1 or k < -1. In case of the metric is being an almost gradient Ricci soliton with respect to the Schouten-van Kampen connection, then we state that the manifold is either N(k)-paracontact metric manifold or an Einstein manifold. Finally, we present some results related to almost Yamabe solitons in a paracontact metric (k, mu)-manifold equipped with the Schouten-van Kampen connection and construct an example which verifies some of our results.
Açıklama
Anahtar Kelimeler
Schouten-van Kampen connection, paracontact metric (k, mu)-manifolds, Ricci semisymmetric, Einstein manifold, eta-Einstein manifold, solitons
Kaynak
Hacettepe Journal of Mathematics and Statistics
WoS Q Değeri
Q3
Scopus Q Değeri
Q3
Cilt
51
Sayı
2