Disturbance rejection FOPID controller design in v-domain

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Due to the adverse effects of unpredictable environmental disturbances on real control systems, robustness of control performance becomes a substantial asset for control system design. This study introduces a v-domain optimal design scheme for Fractional Order Proportional-Integral-Derivative (FOPID) controllers with adoption of Genetic Algorithm (GA) optimization. The proposed design scheme performs placement of system pole with minimum angle to the first Riemann sheet in order to obtain improved disturbance rejection control performance. In this manner, optimal placement of the minimum angle system pole is conducted by fulfilling a predefined reference to disturbance rate (RDR) design specification. For a computer-aided solution of this optimal design problem, a multi-objective controller design strategy is presented by adopting GA. Illustrative design examples are demonstrated to evaluate performance of designed FOPID controllers. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.

Açıklama

Anahtar Kelimeler

Fractional order control system, FOPID controller, Disturbance rejection control, Stability, Computer aided optimal controller design

Kaynak

Journal of Advanced Research

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

25

Sayı

Künye