Preparation, characterization, and biocompatibility of chondroitin sulfate-based sol-gel coatings and investigation of their effects on osseointegration improvement

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis As

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this work, implants with enhanced antibacterial and surface properties besides mechanical, biological, and chemical properties were prepared with the replacement of traditional titanium and titanium alloys in the field of biomedical materials. Titanium substrates were coated with chondroitin sulfate (CS) containing (3-glycidoxypropyl)trimethoxysilane (GLYMO) and tetraethoxysilane (TEOS) based thin film using sol-gel technology. Chondroitin sulfate is a preferred material due to its characteristics antioxidative and osseointegresion properties besides its collagen-forming properties. Coated implants were morphologically elucidated with atomic force microscopy (AFM), and scanning electron microscopy (SEM). The structure of the chondroitin sulfate-containing films was investigated with Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive X-Ray Analysis (EDX) techniques. The obtained CS-based sol-gel surface coatings are thermally stable up to similar to 200 degrees C according to TGA and DTA analysis results. The biological and antibacterial properties of the coatings were also determined. The biocompatibility and osseointegration properties of the coatings developed within the scope of the study were, determined by in vivo studies on rats. According to biocompatibility results of CS/Sol-Gel coated surfaces, Cell viability (%) rates of CS-based coatings showed between 89 and 66%. According to the experimental data, it has been claimed that implants improved with antibacterial, stable, homogeneous, and biocompatible coatings can be used as a new alternative product for dental and orthopedic applications.

Açıklama

Anahtar Kelimeler

Antibacterial property, chondroitin sulfate, metallic implant, sol-gel chemistry

Kaynak

International Journal of Polymeric Materials and Polymeric Biomaterials

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

72

Sayı

18

Künye