Design of Adaptive Fractional-Order PID Controller to Enhance Robustness by Means of Adaptive Network Fuzzy Inference System
dc.authorwosid | Özgüven, ÖmerülFaruk/ABH-1035-2020 | |
dc.authorwosid | Arpacı, Hüseyin/ABG-9777-2020 | |
dc.contributor.author | Arpaci, Huseyin | |
dc.contributor.author | Ozguven, Omerul Faruk | |
dc.date.accessioned | 2024-08-04T20:43:56Z | |
dc.date.available | 2024-08-04T20:43:56Z | |
dc.date.issued | 2017 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | In this paper, a tuning strategy for the design of fractional-order proportional-integral-derivative ((PID mu)-D-lambda) controllers is proposed. First, a (PID mu)-D-lambda controller is designed with genetic algorithm in order to obtain the training data. Then, three Adaptive Network Fuzzy Inference System (ANFIS) structures, related to K-p, K-i and K-d parameters of the (PID mu)-D-lambda controller, are formed by using the training data. These ANFIS structures are used in the (PID mu)-D-lambda controller instead of K-p, K-i and K-d parameters, and they are capable of self-tuning during the simulation based on the input signal of the adaptive (PID mu)-D-lambda controller (ANFIS-(PID mu)-D-lambda). Finally, in order to show the control performance and robustness of the proposed parameters adjustment method with ANFIS, simulation results are obtained by using the MATLAB-Simulink program for two different systems and the results obtained from ANFIS-(PID mu)-D-lambda controller are compared with the results of (PID mu)-D-lambda and fuzzy logic controller. | en_US |
dc.identifier.doi | 10.1007/s40815-016-0283-9 | |
dc.identifier.endpage | 1131 | en_US |
dc.identifier.issn | 1562-2479 | |
dc.identifier.issn | 2199-3211 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-85027187780 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1118 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s40815-016-0283-9 | |
dc.identifier.uri | https://hdl.handle.net/11616/97927 | |
dc.identifier.volume | 19 | en_US |
dc.identifier.wos | WOS:000407380900013 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Heidelberg | en_US |
dc.relation.ispartof | International Journal of Fuzzy Systems | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | ANFIS | en_US |
dc.subject | Fractional-order systems | en_US |
dc.subject | PID controller | en_US |
dc.subject | Adaptive fractional-order PID controller | en_US |
dc.subject | Fuzzy logic control | en_US |
dc.subject | Robustness | en_US |
dc.subject | Tuning coefficient | en_US |
dc.subject | DC motor | en_US |
dc.subject | Heat exchanger | en_US |
dc.title | Design of Adaptive Fractional-Order PID Controller to Enhance Robustness by Means of Adaptive Network Fuzzy Inference System | en_US |
dc.type | Article | en_US |