Double shrunken selection operator

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis Inc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The least absolute shrinkage and selection operator (LASSO) is a prominent estimator which selects significant (under some sense) features and kills insignificant ones. Indeed the LASSO shrinks features larger than a noise level to zero. In this article, we force LASSO to be shrunken more by proposing a Stein-type shrinkage estimator emanating from the LASSO, namely the Stein-type LASSO. The newly proposed estimator proposes good performance in risk sense numerically. Variants of this estimator have smaller relative MSE and prediction error, compared to the LASSO, in the analysis of prostate cancer dataset.

Açıklama

Anahtar Kelimeler

Double shrinking, LASSO, Linear regression model, MSE, Prediction error, Stein-type shrinkage estimator

Kaynak

Communications in Statistics-Simulation and Computation

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

48

Sayı

3

Künye