Double shrunken selection operator

dc.authoridArashi, Mohammad/0000-0002-5881-9241
dc.authoridArashi, Mohammad/0000-0002-5881-9241
dc.authoridYuzbasi, Bahadir/0000-0002-6196-3201
dc.authorwosidArashi, Mohammad/ABD-3395-2020
dc.authorwosidArashi, Mohammad/AAO-4453-2021
dc.authorwosidYuzbasi, Bahadir/F-6907-2013
dc.contributor.authorYuzbasi, B.
dc.contributor.authorArashi, M.
dc.date.accessioned2024-08-04T20:45:43Z
dc.date.available2024-08-04T20:45:43Z
dc.date.issued2019
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThe least absolute shrinkage and selection operator (LASSO) is a prominent estimator which selects significant (under some sense) features and kills insignificant ones. Indeed the LASSO shrinks features larger than a noise level to zero. In this article, we force LASSO to be shrunken more by proposing a Stein-type shrinkage estimator emanating from the LASSO, namely the Stein-type LASSO. The newly proposed estimator proposes good performance in risk sense numerically. Variants of this estimator have smaller relative MSE and prediction error, compared to the LASSO, in the analysis of prostate cancer dataset.en_US
dc.identifier.doi10.1080/03610918.2017.1395040
dc.identifier.endpage674en_US
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85061456667en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage666en_US
dc.identifier.urihttps://doi.org/10.1080/03610918.2017.1395040
dc.identifier.urihttps://hdl.handle.net/11616/98651
dc.identifier.volume48en_US
dc.identifier.wosWOS:000465355800003en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.ispartofCommunications in Statistics-Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDouble shrinkingen_US
dc.subjectLASSOen_US
dc.subjectLinear regression modelen_US
dc.subjectMSEen_US
dc.subjectPrediction erroren_US
dc.subjectStein-type shrinkage estimatoren_US
dc.titleDouble shrunken selection operatoren_US
dc.typeArticleen_US

Dosyalar