Çeşitli Çekirdek Fonksiyonları ile Oluşturulan Destek Vektör Makinesi Modellerinin Performanslarının İncelenmesi: Bir Klinik Uygulama
Küçük Resim Yok
Tarih
2017
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Amaç: Bu araştırmanın birincil amacı; çeşitli çekirdek fonksiyonları ile oluşturulan destek vektör makinesi modellerinin, Akut Koroner Sendromlu hastalarda diabetes mellitusu sınıflandırma performanslarının incelenmesi ve karşılaştırılmasıdır. Bu araştırmanın ikincil amacı ise, destek vektör makinesi modeli oluşturulurken kullanılan çeşitli çekirdek fonksiyonlarının parametrelerinin optimize edilerek en iyi sınıflandırma perfo rmansını elde etmeye çalışmaktır. Gereç ve Yöntem: Bu çalışmada incelenen veriler, İnönü Üniversitesi T urgut Özal Tıp Merkezi Kardiyoloji Anabilim Dalı için geliştirilen veritabanından geriye yönelik (retrospektif) olarak seçilmiştir. Çalışmadaki söz konusu veriler Akut Koroner Sendromlu hastalarda tip 2 diabetes mellitus ile değişik demografik ve klinik değişkenleri içermektedir. Akut Koroner Sendromlu hastalarda tip 2 diabetes mellitus'un sınıflandırılması için Destek Vektör Makinesi modelleri kullanılmıştır. İlgili modeller, ANOVA radyal tabanlı fonksiyon, bessel, doğrusal, Gaussian radyal tabanlı fonksiyon, laplace, polinomiyal ve sigmoid çekirdekleri ile oluşturulmuştur. Bulgular: Laplace çekirdek fonksiyonu ile oluşturulan en iyi sınıflama performansına sahip destek vektör makinesi modeline ilişkin doğr uluk, ROC eğrisi altında kalan alan, duyarlılık ve özgüllük [seçicilik] ölçütleri ile % 95 güven aralığı değerleri sırasıyla; 0.9804 (0.9716 - 0.987), 0.9332 (0.9096 - 0.9567), 0.9999 (0.9791 - 1.000) ve 0.9776 (0.9675 - 0.9852) olarak elde edilmiştir. Sonuç: İncelenen değişik çekirdek fonksiyonları ile oluşturulan modeller arasında söz konusu performans ölçütleri dikkate alındığında, en iyi sınıflama performansı laplace Destek Vektör Makinesi modelinden elde edilmiştir. İlerleyen çalışmalarda, farklı klinik verilerde değişik çekirdek fonksiyonlu Destek Vektör Makinesi modelleri ile diğer makine öğrenmesi ya da veri madenciliği algoritmalarının kullanılması hastalıkların sınıflandırma başarısını artırabilecektir.
Açıklama
Anahtar Kelimeler
Kaynak
Fırat Tıp Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
22
Sayı
3