Çeşitli Çekirdek Fonksiyonları ile Oluşturulan Destek Vektör Makinesi Modellerinin Performanslarının İncelenmesi: Bir Klinik Uygulama

dc.contributor.authorGüldoğan, Emek
dc.contributor.authorArslan, Ahmet Kadir
dc.contributor.authorYağmur, Jülide
dc.date.accessioned2024-08-04T19:51:22Z
dc.date.available2024-08-04T19:51:22Z
dc.date.issued2017
dc.departmentİnönü Üniversitesien_US
dc.description.abstractAmaç: Bu araştırmanın birincil amacı; çeşitli çekirdek fonksiyonları ile oluşturulan destek vektör makinesi modellerinin, Akut Koroner Sendromlu hastalarda diabetes mellitusu sınıflandırma performanslarının incelenmesi ve karşılaştırılmasıdır. Bu araştırmanın ikincil amacı ise, destek vektör makinesi modeli oluşturulurken kullanılan çeşitli çekirdek fonksiyonlarının parametrelerinin optimize edilerek en iyi sınıflandırma perfo rmansını elde etmeye çalışmaktır. Gereç ve Yöntem: Bu çalışmada incelenen veriler, İnönü Üniversitesi T urgut Özal Tıp Merkezi Kardiyoloji Anabilim Dalı için geliştirilen veritabanından geriye yönelik (retrospektif) olarak seçilmiştir. Çalışmadaki söz konusu veriler Akut Koroner Sendromlu hastalarda tip 2 diabetes mellitus ile değişik demografik ve klinik değişkenleri içermektedir. Akut Koroner Sendromlu hastalarda tip 2 diabetes mellitus'un sınıflandırılması için Destek Vektör Makinesi modelleri kullanılmıştır. İlgili modeller, ANOVA radyal tabanlı fonksiyon, bessel, doğrusal, Gaussian radyal tabanlı fonksiyon, laplace, polinomiyal ve sigmoid çekirdekleri ile oluşturulmuştur. Bulgular: Laplace çekirdek fonksiyonu ile oluşturulan en iyi sınıflama performansına sahip destek vektör makinesi modeline ilişkin doğr uluk, ROC eğrisi altında kalan alan, duyarlılık ve özgüllük [seçicilik] ölçütleri ile % 95 güven aralığı değerleri sırasıyla; 0.9804 (0.9716 - 0.987), 0.9332 (0.9096 - 0.9567), 0.9999 (0.9791 - 1.000) ve 0.9776 (0.9675 - 0.9852) olarak elde edilmiştir. Sonuç: İncelenen değişik çekirdek fonksiyonları ile oluşturulan modeller arasında söz konusu performans ölçütleri dikkate alındığında, en iyi sınıflama performansı laplace Destek Vektör Makinesi modelinden elde edilmiştir. İlerleyen çalışmalarda, farklı klinik verilerde değişik çekirdek fonksiyonlu Destek Vektör Makinesi modelleri ile diğer makine öğrenmesi ya da veri madenciliği algoritmalarının kullanılması hastalıkların sınıflandırma başarısını artırabilecektir.en_US
dc.identifier.endpage142en_US
dc.identifier.issn1300-9818
dc.identifier.issn2147-124X
dc.identifier.issue3en_US
dc.identifier.startpage136en_US
dc.identifier.trdizinid281918en_US
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/281918
dc.identifier.urihttps://hdl.handle.net/11616/88930
dc.identifier.volume22en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isotren_US
dc.relation.ispartofFırat Tıp Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleÇeşitli Çekirdek Fonksiyonları ile Oluşturulan Destek Vektör Makinesi Modellerinin Performanslarının İncelenmesi: Bir Klinik Uygulamaen_US
dc.typeArticleen_US

Dosyalar