InceptionV3 based enriched feature integration network architecture for pixel-level surface defect detection

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Gazi Univ, Fac Engineering Architecture

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, InceptionV3 based Enriched Feature Integration Network (Inc-EFIN) architecture was developed for automatic detection of surface defects. In the proposed architecture, features of all levels of the InceptionV3 architecture are extracted and the features with the same height and width are combined. As a result of merging, 5 feature maps were obtained. Channel-Based Squeeze and Excitation block has been applied to reveal important details in these feature maps. In Feature Pyramid Network module, information from low-level feature maps containing spatial details were transferred to high-level feature maps containing semantic details. Then, for the final feature map, features were combined using the Feature Integration and Signification (FIS) module. The feature map combined in the FIS module was passed through the Spatial and Channel-based Squeeze and Excitation block. Defect detection results were obtained by using convolution and sigmoid layers in the last layer of the Inc-EFIN architecture. MT, MVTec-Texture, and DAGM datasets were used to calculate the pixel-level defect detection success of the Inc-EFIN architecture. In experimental studies, Inc-EFIN architecture achieved higher performance than the latest technologies in the literature with 77.44% mIoU, 81.2% mIoU and 79.46% mIoU performance results in MT, MVTec-Texture and DAGM datasets, respectively.

Açıklama

Anahtar Kelimeler

Pixel-level surface defects detection, convolutional neural network, squeeze and excitation block, feature pyramid networks

Kaynak

Journal of The Faculty of Engineering and Architecture of Gazi University

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

38

Sayı

2

Künye