Disturbance Rejection Fractional Order PID Controller Design in v-domain by Particle Swarm Optimization

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Design and stabilization problems of fractional order PID (FOPID) controllers have been generally solved in frequency, time and s-domains. This study presents a design scheme in v-domain for optimal disturbance reject FOPID controller tuning problem. The proposed method is based on optimally placement of minimum angle system poles inside stability region of the first Riemann sheet to improve disturbance rejection control performance. For a given stabilizing target angle of minimum angle system pole, the purposed design approach maximizes reference to disturbance rate (RDR) index. For this purpose, optimization problem is defined as maximization of RDR index subject to minimum angle pole placement constraint. This constraint ensures stability of resulting FOPID control system by placing the minimum angle system pole into stability region of v-domain. Particle swarm optimization (PSO) is implemented to solve this optimization problem. An illustrative design example is presented to show effectiveness of the proposed design method.

Açıklama

International Conference on Artificial Intelligence and Data Processing (IDAP) -- SEP 21-22, 2019 -- Inonu Univ, Malatya, TURKEY

Anahtar Kelimeler

PSO, fractional order PID control, fractional order system stabilization

Kaynak

2019 International Conference on Artificial Intelligence and Data Processing (Idap 2019)

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

Sayı

Künye