A new approach for Pap-Smear image generation with generative adversarial networks
dc.authorid | Talu, Muhammed Fatih/0000-0003-1166-8404 | |
dc.authorid | ALTUN GUVEN, SARA/0000-0003-2877-7105 | |
dc.authorwosid | Talu, Muhammed Fatih/W-2834-2017 | |
dc.contributor.author | Altun, Sara | |
dc.contributor.author | Talu, Muhammed Fatih | |
dc.date.accessioned | 2024-08-04T20:10:11Z | |
dc.date.available | 2024-08-04T20:10:11Z | |
dc.date.issued | 2022 | |
dc.department | İnönü Üniversitesi | en_US |
dc.description.abstract | Purpose: In this study, a new GAN model for histopathological Pap-Smear images generation is suggested. To illustrate the advantage of the proposed GAN model (Pix2PixSSIM), a comprehensive experimental study has been carried out. Theory and Methods: Pix2PixSSIM designed as generative adversarial networks model for histopathological Pap-Smear images generation. In addition, the proposed model compared with the existing GANs (i.e., Pix2Pix, CycleGAN, DiscoGAN and AttentionGAN). Results: In experimental studies, Pix2PixSSIM, which is designed as generative adversarial networks model for histopathological Pap-Smear images generation, has shown high accuracy than other methods. Conclusion: It is seen that the performance of the proposed GAN architecture to produce patterns similar to real Pap-Smear visuals gives successful results (MSI=23.649, PSNR=37.476) when compared to existing approaches (MathModel and classical image synthesis methods). | en_US |
dc.identifier.doi | 10.17341/gazimmfd.939092 | |
dc.identifier.endpage | 1410 | en_US |
dc.identifier.issn | 1300-1884 | |
dc.identifier.issn | 1304-4915 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85128740867 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 1401 | en_US |
dc.identifier.trdizinid | 508632 | en_US |
dc.identifier.uri | https://doi.org/10.17341/gazimmfd.939092 | |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/508632 | |
dc.identifier.uri | https://hdl.handle.net/11616/92644 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000834843300020 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | TR-Dizin | en_US |
dc.language.iso | en | en_US |
dc.publisher | Gazi Univ, Fac Engineering Architecture | en_US |
dc.relation.ispartof | Journal of The Faculty of Engineering and Architecture of Gazi University | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Pap-Smear | en_US |
dc.subject | Image generation | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | Generative Adversarial Networks | en_US |
dc.title | A new approach for Pap-Smear image generation with generative adversarial networks | en_US |
dc.type | Article | en_US |