Deep learning based brain tumor classification and detection system

dc.contributor.authorArı, Ali
dc.contributor.authorHanbay, Davut
dc.date.accessioned2019-07-08T12:33:28Z
dc.date.available2019-07-08T12:33:28Z
dc.date.issued2018
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThe brain cancer treatment process depends on the physician's experience and knowledge. For this reason, using an automated tumor detection system is extremely important to aid radiologists and physicians to detect brain tumors. The proposed method has three stages, which are preprocessing, the extreme learning machine local receptive fields (ELM-LRF) based tumor classification, and image processing based tumor region extraction. At first, nonlocal means and local smoothing methods were used to remove possible noises. In the second stage, cranial magnetic resonance (MR) images were classified as benign or malignant by using ELM-LRF. In the third stage, the tumors were segmented. The purpose of the study was using only cranial MR images, which have a mass, in order to save the physician's time. In the experimental studies the classification accuracy of cranial MR images is 97.18%. Evaluated results showed that the proposed method's performance was better than the other recent studies in the literature. Experimental results also proved that the proposed method is effective and can be used in computer aided brain tumor detection.en_US
dc.identifier.citationArı, A. Hanbay, D. (2018). Deep learning based brain tumor classification and detection system. Cilt:26 Sayı:5, 2275-2286 ss.en_US
dc.identifier.doi10.3906/elk-1801-8en_US
dc.identifier.endpage2286en_US
dc.identifier.issn1300-0632
dc.identifier.issn1300-0632
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85054551418en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage2275en_US
dc.identifier.trdizinid323634en_US
dc.identifier.urihttps://doi.org/10.3906/elk-1801-8
dc.identifier.urihttps://hdl.handle.net/11616/12414
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/323634
dc.identifier.volume26en_US
dc.identifier.wosWOS:000448109200009en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY, ATATURK BULVARI NO 221, KAVAKLIDERE, ANKARA, 00000, TURKEYen_US
dc.relation.ispartofTurkısh journal of electrıcal engıneerıng and computer scıencesen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectImage Segmentatıonen_US
dc.titleDeep learning based brain tumor classification and detection systemen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
makale.pdf
Boyut:
1.18 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale Dosyası
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: