Choice of smoothing parameter for kernel type ridge estimators in semiparametric regression models

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

National Statistical Institute

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper concerns kernel-type ridge estimators of parameters in a semiparametric model. These estimators are a generalization of the well-known Speckman’s approach based on kernel smoothing method. The most important factor in achieving this smoothing method is the selection of the smoothing parameter. In the literature, many selection criteria for comparing regression models have been produced. We will focus on six selection criterion improved version of Akaike information criterion (AICc), generalized cross-validation (GCV), Mallows’ Cp criterion, risk estimation using classical pilots (RECP), Bayes information criterion (BIC), and restricted maximum likelihood (REML). Real and simulated data sets are considered to illustrate the key ideas in the paper. Thus, suitable selection criterion are provided for optimum smoothing parameter selection. © 2021, National Statistical Institute. All rights reserved.

Açıklama

Anahtar Kelimeler

Kernel smoothing, Ridge type estimator, Semiparametric model, Smoothing parameter generalized cross-validation

Kaynak

REVSTAT-Statistical Journal

WoS Q Değeri

Scopus Q Değeri

Q3

Cilt

19

Sayı

1

Künye