Choice of smoothing parameter for kernel type ridge estimators in semiparametric regression models

dc.authorscopusid57195516857
dc.authorscopusid55581057800
dc.authorscopusid16027626200
dc.contributor.authorYilmaz E.
dc.contributor.authorYuzbasi B.
dc.contributor.authorAydin D.
dc.date.accessioned2024-08-04T20:02:33Z
dc.date.available2024-08-04T20:02:33Z
dc.date.issued2021
dc.departmentİnönü Üniversitesien_US
dc.description.abstractThis paper concerns kernel-type ridge estimators of parameters in a semiparametric model. These estimators are a generalization of the well-known Speckman’s approach based on kernel smoothing method. The most important factor in achieving this smoothing method is the selection of the smoothing parameter. In the literature, many selection criteria for comparing regression models have been produced. We will focus on six selection criterion improved version of Akaike information criterion (AICc), generalized cross-validation (GCV), Mallows’ Cp criterion, risk estimation using classical pilots (RECP), Bayes information criterion (BIC), and restricted maximum likelihood (REML). Real and simulated data sets are considered to illustrate the key ideas in the paper. Thus, suitable selection criterion are provided for optimum smoothing parameter selection. © 2021, National Statistical Institute. All rights reserved.en_US
dc.identifier.endpage69en_US
dc.identifier.issn1645-6726
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85104005966en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage47en_US
dc.identifier.urihttps://hdl.handle.net/11616/91761
dc.identifier.volume19en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherNational Statistical Instituteen_US
dc.relation.ispartofREVSTAT-Statistical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectKernel smoothingen_US
dc.subjectRidge type estimatoren_US
dc.subjectSemiparametric modelen_US
dc.subjectSmoothing parameter generalized cross-validationen_US
dc.titleChoice of smoothing parameter for kernel type ridge estimators in semiparametric regression modelsen_US
dc.typeArticleen_US

Dosyalar