Function bases for Topological vector spaces

Küçük Resim Yok

Tarih

2009

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Juliusz Schauder Center for Nonlinear Studies

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Our main interest in this work is to characterize certain operator spaces acting on some important vector-valued function spaces such as (V a)a?A c0 , by introducing a new kind basis notion for general Topological vector spaces. Where A is an infinite set, each Va is a Banach space and (Va) a?A c0 is the linear space of all functions x:A ? ?Va such that, for each ? > 0, the set {a ? A : ?xa? > ?} is finite or empty. This is especially important for the vector-valued sequence spaces (V i)i?N c0 because of its fundamental place in the theory of the operator spaces (see, for example, [12]). © 2009 Juliusz Schauder Center for Nonlinear Studies.

Açıklama

Anahtar Kelimeler

Biorthogonal systems, Generalization of bases, Operators on function spaces, Representation of operators, Schauder bases, Vector-valued function spaces

Kaynak

Topological Methods in Nonlinear Analysis

WoS Q Değeri

Scopus Q Değeri

Q2

Cilt

33

Sayı

2

Künye