Function bases for Topological vector spaces
Küçük Resim Yok
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Juliusz Schauder Center for Nonlinear Studies
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Our main interest in this work is to characterize certain operator spaces acting on some important vector-valued function spaces such as (V a)a?A c0 , by introducing a new kind basis notion for general Topological vector spaces. Where A is an infinite set, each Va is a Banach space and (Va) a?A c0 is the linear space of all functions x:A ? ?Va such that, for each ? > 0, the set {a ? A : ?xa? > ?} is finite or empty. This is especially important for the vector-valued sequence spaces (V i)i?N c0 because of its fundamental place in the theory of the operator spaces (see, for example, [12]). © 2009 Juliusz Schauder Center for Nonlinear Studies.
Açıklama
Anahtar Kelimeler
Biorthogonal systems, Generalization of bases, Operators on function spaces, Representation of operators, Schauder bases, Vector-valued function spaces
Kaynak
Topological Methods in Nonlinear Analysis
WoS Q Değeri
Scopus Q Değeri
Q2
Cilt
33
Sayı
2