Function bases for Topological vector spaces

dc.authorscopusid7007034346
dc.contributor.authorYilmaz Y.
dc.date.accessioned2024-08-04T20:00:52Z
dc.date.available2024-08-04T20:00:52Z
dc.date.issued2009
dc.departmentİnönü Üniversitesien_US
dc.description.abstractOur main interest in this work is to characterize certain operator spaces acting on some important vector-valued function spaces such as (V a)a?A c0 , by introducing a new kind basis notion for general Topological vector spaces. Where A is an infinite set, each Va is a Banach space and (Va) a?A c0 is the linear space of all functions x:A ? ?Va such that, for each ? > 0, the set {a ? A : ?xa? > ?} is finite or empty. This is especially important for the vector-valued sequence spaces (V i)i?N c0 because of its fundamental place in the theory of the operator spaces (see, for example, [12]). © 2009 Juliusz Schauder Center for Nonlinear Studies.en_US
dc.identifier.doi10.12775/TMNA.2009.023
dc.identifier.endpage353en_US
dc.identifier.issn1230-3429
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-77956477136en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage335en_US
dc.identifier.urihttps://doi.org/10.12775/TMNA.2009.023
dc.identifier.urihttps://hdl.handle.net/11616/91052
dc.identifier.volume33en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherJuliusz Schauder Center for Nonlinear Studiesen_US
dc.relation.ispartofTopological Methods in Nonlinear Analysisen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiorthogonal systemsen_US
dc.subjectGeneralization of basesen_US
dc.subjectOperators on function spacesen_US
dc.subjectRepresentation of operatorsen_US
dc.subjectSchauder basesen_US
dc.subjectVector-valued function spacesen_US
dc.titleFunction bases for Topological vector spacesen_US
dc.typeArticleen_US

Dosyalar