Preparation of Poly (N-Isopropylacrylamide)-Poly (2-Ethyl-2-Oxazoline) and Their Self-Assembly Properties with Dicarboxylic Acid
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Turkish Chemical Society
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This study reports the synthesis of copolymers that contain thermally responsive polymers, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(2-ethyl-2-oxazoline) (PEOX), as well as biodegradable side groups that are water-soluble and capable of hydrogen bonding. The assay aims to produce heat-responsive PNIPAM and PEOX polymers with di-carboxylic acid (DCA) controlled structuring of the resulting pH-sensitive nano-structured polymers. These will be used as a template in the synthesis of inorganic materials. The study demonstrated the impact of pH, salt concentration, and temperature on the polymer/DCA. This fragment describes the functional groups of the thermosensitive polymers PNIPAM and PEOX. These polymers have carboxylic acid functional groups at both ends, are water soluble, and are capable of hydrogen bonding. The structure of these polymers can be recognized with small molecules of DCA in an aqueous solution at different pH, salt concentrations, and temperatures with H-bonds. Additionally, these polymers can be used as templates to synthesize hollow silica polymers. The synthesized monomers and polymers were structurally characterized using Fourier transform infrared spectrophotometer (FT-IR). The resulting structured polymers were identified by scanning electron microscopy and atomic force microscopy (SEM, AFM). UV-VIS spectrophotometer and Differential Scanning Calorimetry (DSC) were used to determine the Lower Critical Solution temperature of the polymers. © 2024, Turkish Chemical Society. All rights reserved.
Açıklama
Anahtar Kelimeler
nano-structured material, pH-sensitivity, Self-organization, template
Kaynak
Journal of the Turkish Chemical Society, Section A: Chemistry
WoS Q Değeri
Scopus Q Değeri
Q4
Cilt
11
Sayı
2